skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Beaulieu, Olivia P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Landslides pose a major natural hazard, and heterogeneous conditions and limited data availability in the field make it difficult to connect mapped landslide inventories to the underlying mass-failure mechanics. To test and build predictive links between landslide observations and mechanics, we monitored 67.89 h of physical experiments in which an incising and laterally migrating river generated landslides by undercutting banks of moist sand. Using overhead photos (every 20 s) and 1-mm-resolution laser topographic scans (every 15–30 min), we quantified the area, width, length, depth, volume, and time of every visible landslide, as well as the scarp angles for those within 3 min prior to a topographic scan. Both the landslide area–frequency distribution and area–volume relationship are consistent with those from field data. Cohesive strength controlled the peak in landslide area–frequency distribution. These results provide experimental support for inverting landslide inventories to recover the mechanical properties of hillslopes, which can then be used to improve hazard predictions. 
    more » « less